Недоносеност и дългосрочни ефекти върху бъбречната функция

Резюме

Благодарение на забележителният напредък на неонатологията, голяма част от недоносените деца вече достигат зряла възраст, за разлика от миналото. Основни терапевтични проблеми при тях са белодробните промени, очното засягане, неврологичните отклонения, докато „здравето на бъбрекът“ е подценявано. Съществуват експериментални проучвания и наблюдения при хора, които доказват, че недоносеността е рисков фактор за хронично бъбречно заболяване. Според теорията за фетално програмиране много  от заболяванията на възрастните имат произход във феталния живот. Счита се, че по-малкият брой нефрони води до гломерулна хиперфилтрация с функционални последици като албуминурия, артериална хипертония и хронично бъбречно заболяване. Увеличената загуба на подоцити в урината на недоносени деца също може да допринесе за развитие на хронично бъбречно заболяване. То често е неразпознато поради обичайният си „тих“ клиничен ход. С настоящия обзор ние насочваме вниманието върху необходимостта от  проследяване на бъбречната функция на недоносените деца. Ранното откриване на бъбречна дисфункция е от голямо значение, тъй като съществуват мерки за забавяне на прогресията на бъбречната увреда.  Дискутират се препоръки за мониториране на бъбречната функция при недоносените деца на базата на индивидуалния риск.

Ключови думи: Недоносеност, нефрогенеза, фетално програмиране, гломерулна хиперфилтрация, хронично бъбречно заболяване, бъбречна функция

To access this content, you must purchase Годишен абонамент.

Библиография

  1. Буева А., Бъбреците през неонаталния период- уникалност на функция и морфология, 2004, издателство Дуо-В.
  2. Слънчева Б., Бъбречни заболявания в периода на новороденото, Неонатология, 2018, издателство Лакс бук.
  3. Буева А., Ехографският метод в педиатрията, Атлас по ултразвукова диагностика, 2008.
  4. Гайдарова М., Ехографска диагностика на отделителната система в неонаталния период, Неонатология, 2018, издателство Лакс бук.
  5.  Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional,and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012; 379(9832): 2162-72.
  6.  WHA Global Nutritional Targets 2025. Low Birth Weight Policy Brief. http://www.who.int/nutrition/ topics/globaltargets_lowbirth weight _policybrief.pdf
  7. 7. Horbar JD, Carpenter JH, Badger GJ, et al. Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics. 2012;129(6):1019–1026
  8. 8. Glass HC, Costarino AT, Stayer SA, Brett CM, Cladis F, Davis PJ (2015) Outcomes for extremely premature infants. Anesth Analg 120:1337–1351.
  9. 9. Brumbaugh JE, Hansen NI, Bell EF, Sridhar A, Carlo WA, Hintz SR, Vohr BR, Colaizy TT, Duncan AF, Wyckoff MH, Baack ML, Rysavy MA, DeMauro SB, Stoll BJ, Das A, Higgins RD; National Institute of Child Health and Human Development Neonatal Research Network (2019) Outcomes of extremely preterm infants with birth weight less than 400 g. JAMA Pediatr 173:434–445. https:// doi. org/ 10. 1001/ jamap ediat rics. 2019. 0180
  10. 10. Pascal A, Govaert P, Oostra A, Naulaers G, Ortibus E, Van den Broeck C (2018) Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review. Dev Med Child Neurol 60:342–355. https://doi. org/ 10. 1111/ dmcn. 13675
  11. 11.Hack M, Taylor HG, Drotar D, et al. Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics. 2005;116(2):333–341
  12. 12. Hack M, Flannery DJ, Schluchter M, Cartar L, Borawski E, Klein N. Outcomes in young adulthood for very-low-birth-weight infants.N Engl J Med. 2002;346(3):149–157
  13. 13. Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M. Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics. 2005;115 (4):997–1003
  14. 14. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM (2008)Low birth weight increases risk for end-stage renal disease. J AmSoc Nephrol 19:151–157.
  15. 15. Ruggajo P, Skrunes R, Svarstad E, Skj.rven R, Reis.ther AV,Vikse BE (2016) Familial factors, low birth weight, and development of ESRD: a nationwide registry study. Am J Kidney Dis67:601–608. https:// doi. org/ 10. 1053/j. ajkd. 2015. 11. 015
  16. 16. Hirano D, Ishikura K, Uemura O, Ito S, Wada N, Hattori M,Ohashi Y, Hamasaki Y, Tanaka R, Nakanishi K, Kaneko T, Honda M (2016) Association between low birth weight and childhood onset chronic kidney disease in Japan: a combined analysis of a nationwide survey for paediatric chronic kidney disease and the National Vital Statistics Report. Nephrol Dial Transplant 31:1895–1900. https:// doi. org/ 10. 1093/ ndt/ gfv425
  17. 17. Iacobelli S, Guignard JP. When the progresses in neonatology lead to severe congenital nephron deficit: is there a pilot in the NICU? Pediatr Nephrol. 2022 Jun;37(6):1277-1284. doi: 10.1007/s00467-021-05338-8. Epub 2021 Nov 10. Erratum in: Pediatr Nephrol. 2022 Jan 10;: PMID: 34761299.
  18. 18. Carmody JB, Charlton JR. Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics. 2013 Jun;131(6):1168-79. doi: 10.1542/peds.2013-0009. Epub 2013 May 13. PMID: 23669525.
  19. 19. Chehade H, Simeoni U, Guignard JP, Boubred F. Preterm Birth: Long Term Cardiovascular and Renal Consequences. Curr Pediatr Rev. 2018;14(4):219-226. doi: 10.2174/1573396314666180813121652. PMID: 30101715; PMCID: PMC6416185.
  20. 20. Starr MC, Hingorani SR. Prematurity and future kidney health: the growing risk of chronic kidney disease. Curr Opin Pediatr. 2018 Apr;30(2):228-235.
  21. 21. Rodríguez MM, Gómez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2004 Jan-Feb;7(1):17-25.
  22. 22. Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RS, Hoy WE, Bertram JF, Black MJ. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol. 2011 Jul;22(7):1365-74.
  23. 23. Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 2003 Jun;63(6):2113-22.
  24. 24. Faa G, Gerosa C, Fanni D, Nemolato S, Locci A, Cabras T, Marinelli V, Puddu M, Zaffanello M, Monga G, Fanos V. Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy. J Matern Fetal Neonatal Med. 2010 Oct;23 Suppl 3:129-33.
  25. 25. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989 Mar 4;298(6673):564-7.
  26. 26. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens. 1988 Oct;1(4 Pt 1):335-47.
  27. 27. Luyckx VA, Brenner BM. Low birth weight, nephron number, and kidney disease. Kidney Int Suppl. 2005 Aug;(97):S68-77.
  28. 28. Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis. 1994 Feb;23(2):171-5.
  29. 29. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet. 2013 Jul 20;382(9888):273-83.
  30. 30. Ding F, Gao Q, Tian X, Mo J, Zheng J. Increasing urinary podocyte mRNA excretion and progressive podocyte loss in kidney contribute to the high risk of long-term renal disease caused by preterm birth. Sci Rep. 2021 Oct 19;11(1):20650.
  31. 31. Gao Q, Lu C, Tian X, Zheng J, Ding F. Urine podocyte mRNA loss in preterm infants and related perinatal risk factors. Pediatr Nephrol. 2023 Mar;38(3):729-738.
  32. 32. Naik AS, Le D, Aqeel J, Wang SQ, Chowdhury M, Walters LM, Cibrik DM, Samaniego M, Wiggins RC. Podocyte stress and detachment measured in urine are related to mean arterial pressure in healthy humans. Kidney Int. 2020 Sep;98(3):699-707.
  33. 33. Kriz W, Gretz N, Lemley KV. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int. 1998 Sep;54(3):687-97.
  34. 34. Kim YH, Goyal M, Kurnit D, Wharram B, Wiggins J, Holzman L, Kershaw D, Wiggins R. Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int. 2001 Sep;60(3):957-68.
  35. 35. Kriz W. Podocyte is the major culprit accounting for the progression of chronic renal disease. Microsc Res Tech. 2002 May 15;57(4):189-95.
  36. 36. Wiggins RC. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 2007 Jun;71(12):1205-14.
  37. 37. Crump C, Sundquist J, Winkleby MA, Sundquist K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ. 2019 May 1;365:l1346.
  38. 38. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis. 2009 Aug;54(2):248-61.
  39. 39. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM. Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol. 2008 Jan;19(1):151-7.
  40. 40. Hirano D, Ishikura K, Uemura O, Ito S, Wada N, Hattori M, Ohashi Y, Hamasaki Y, Tanaka R, Nakanishi K, Kaneko T, Honda M; Pediatric CKD Study Group in Japan in conjunction with the Committee of Measures for Pediatric CKD of the Japanese Society of Pediatric Nephrology. Association between low birth weight and childhood-onset chronic kidney disease in Japan: a combined analysis of a nationwide survey for paediatric chronic kidney disease and the National Vital Statistics Report. Nephrol Dial Transplant. 2016 Nov;31(11):1895-1900.
  41. 41. March of Dimes. PeriStats. www.marchofdimes.com/Peristats/.accessed 1 Aug 2018
  42. 42. Zeitlin J, Szamotulska K, Drewniak N, et al. Euro-Peristat Preterm Study Group. Preterm birth time trends in Europe: a study of 19 countries. BJOG 2013;120:1356-65.
  43. 43. Hsu RK, Powe NR. Recent trends in the prevalence of chronic kidney disease: not the same old song. Curr Opin Nephrol Hypertens. 2017 May;26(3):187-196.
  44. 44. Wühl E, Schaefer F. Therapeutic strategies to slow chronic kidney disease progression. Pediatr Nephrol. 2008 May;23(5):705-16. doi: 10.1007/s00467-008-0789-y. Epub 2008 Mar 12.
  45. 45. Luyckx VA, Perico N, Somaschini M, Manfellotto D, Valensise H, Cetin I, Simeoni U, Allegaert K, Vikse BE, Steegers EA, Adu D, Montini G, Remuzzi G, Brenner BM; writing group of the Low Birth Weight and Nephron Number Working Group. A developmental approach to the prevention of hypertension and kidney disease: a report from the Low Birth Weight and Nephron Number Working Group. Lancet. 2017 Jul 22;390(10092):424-428.
  46. 46. Torres-Canchala L, Rengifo M, Filler G, Arias JC, Ramirez O, Restrepo JM. Low agreement between kidney volume and kidney length z-scores. Pediatr Nephrol. 2021 Jun;36(6):1525-1532.
  47. 47. Starzec K, Klimek M, Grudzień A, Jagła M, Kwinta P. Longitudinal assessment of renal size and function in extremely low birth weight children at 7 and 11 years of age. Pediatr Nephrol. 2016 Nov;31(11):2119-26.
  48. 48. Rakow A, Laestadius Å, Liliemark U, Backheden M, Legnevall L, Kaiser S, Vanpée M. Kidney volume, kidney function, and ambulatory blood pressure in children born extremely preterm with and without nephrocalcinosis. Pediatr Nephrol. 2019 Oct;34(10):1765-1776.

Адрес за кореспонденция:

Първа Детска Консултативна Клиника – София

Бул. “България”, 51, вх. 3 

1404, София